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Abstract

In black-box optimization, an agent repeatedly chooses a configuration to test, so
as to find an optimal configuration. In many practical problems of interest, one
would like to optimize several systems, or “tasks”, simultaneously; however, in
most of these scenarios the current task is determined by nature. In this work, we
explore the “offline” case in which one is able to bypass nature and choose the
next task to evaluate (e.g. via a simulator). Because some tasks may be easier
to optimize and others may be more critical, it is crucial to leverage algorithms
that not only consider which configurations to try next, but also which tasks to
make evaluations for. In this work, we describe a theoretically grounded Bayesian
optimization method to tackle this problem. We also demonstrate that if the model
of the reward structure does a poor job of capturing variation in difficulty between
tasks, then algorithms that actively pick tasks for evaluation may end up doing
more harm than good. Following this, we show how our approach can be used for
real world applications in science and engineering, including optimizing tokamak
controls for nuclear fusion.

1 Introduction

Black-box optimization is the problem in which one tries to find the maximum of an unknown function
solely using evaluations for specified inputs. In many interesting scenarios, there is a collection of
unknown, possibly correlated functions (or tasks) that need to be simultaneously optimized. This
problem set up often occurs in applications where one wants to design an agent that makes an action
based on some contextual information from the environment. However, we would prefer that the agent
not run potentially costly or poor performing experimental actions online. Also, because the agent
may have to make these decisions at a rapid pace, we often do not have time to compute an expensive
experimentation policy. We consider applications that provide the ability to run offline experiments
where nature can be bypassed and the contextual information can be manually set (e.g. on a surrogate
system or on a simulation). These experiments are used to discover a good action policy which is
then encoded into a fast cache, such as a look-up table. Even though the experiments are done offline,
they are still expensive and we must search the design space efficiently. The following are examples
of this problem:

e Nuclear Fusion A tokamak is a device used to magnetically confine plasma and is the most
commonly pursued means of generating power from controlled nuclear fusion. A current
obstacle in realizing sustained nuclear fusion is the difficulty in maintaining the plasma’s
stability at the required temperatures and pressures for a prolonged period of time. We
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consider the stability of the plasma as an output to optimize, where the input is the controls
for the tokamak. The optimal action depends on the current state of the plasma, so each
plasma state can be regarded as its own task to optimize. We cannot search for a good
control policy during live experiments because of cost, limited time available on the device,
and the need to provide a real-time controller that operates in a millisecond scale control
loop. However, we do have a simulation (forward model) that may be used with Bayesian
optimization offline to discover a good controller. Importantly, the simulator allows one to
manually set the current state of the plasma, and thus prudently selecting states to optimize
over becomes an important part of the problem.

e Database Tuning Consider the problem of tuning the configuration of a database so as
to minimize the latency, the CPU/memory footprint, or any other desired criteria. The
performance of a configuration depends critically on the underlying hardware and the
workload [Van Aken et al., 2017]. Since these variables can change when databases are
deployed in production, we need to simultaneously optimize for these different tasks.

In each of the above settings, difficulty of the tasks may vary drastically. For example, in the nuclear
fusion application, if the current state of the plasma is already stable, the stability may be less sensitive
to controls, leading to an easy optimization landscape. On the other hand, when the plasma is in
an unstable state, it may be that only a small set of controls will lead to improved stabilization and
finding them may require many more experiments.

In this paper, we propose a Thompson sampling approach for adaptively picking the next task and input
for evaluation. Unlike other Bayesian Optimization (BO) algorithms, evaluations are picked in order
to efficiently estimate the optimal action for each task, where these optimal actions are most likely
distinct. This algorithm comes with theoretic guarantees, and we show that it often enjoys a significant
boost in performance when compared to uniformly distributing resources across tasks and other state
of the art methods. Another contribution of this paper is showing the significance of model choice in
this setting. We argue that when using a single Gaussian process (GP) to jointly model correlated
tasks, the choice of kernel is crucial for estimating the difficulty of each task. We believe that model
selection here is even more important than in single-task BO because incorrect estimates can lead
to poorly managed resource allocation for tasks. We give an example where inaccurately modeling
reward structure between tasks via a stationary kernel severely hurts our algorithm. Following this,
we suggest a kernel with a lengthscale that varies with tasks and show that this more intelligent kernel
again allows our algorithm to enjoy a performance boost. An implementation of our algorithm and
synthetic experiments can be found at https://github.com/fusion-ml/0CBO.

We end this paper by showing an application of our method to the nuclear fusion problem. In particular,
we optimize tokamak controls for a set of different plasma states using a tokamak simulator. We
observe that our method is able to identify where best to devote resources, leading to efficient
optimization.

2 Related Work

Our algorithm falls under the general umbrella of Bayesian optimization [Shahriari et al., 2015,
Frazier, 2018]. As is common in BO, we use a GP prior to guide us in selecting next evaluations to
make. Previously, in the context of active learning and active sensing, techniques have been made that
use GPs to select the most informative points for evaluation [Pasolli and Melgani, 2011, Seo et al.,
2000, Guestrin et al., 2005]. In contrast, our goal is optimization which is more in line with bandit
methods. Under the bandits setting, Srinivas et al. [2009] use an upper confidence bound approach
with GPs and show that such a strategy results in sublinear cumulative regret. As an alternative to the
upper confidence bound approach, Russo and Van Roy [2014] show that one can achieve sublinear
cumulative regret using a posterior sampling (or Thompson sampling) approach. The method we
present here is also a posterior sampling method, and it falls into the general framework of myopic
posterior sampling described by Kandasamy et al. [2019a].

Our setting is related to online contextual bandits [Krause and Ong, 2011, Agrawal and Goyal, 2013,
Auer, 2002], where each task can be viewed as a different context. In these earlier works, the agent
chooses an action online for a context that is chosen by the environment. In our setting, we wish to
find the optimal action offline in advance and can choose the contexts we invest our experimentation
effort on. The models in the works of Krause and Ong [2011], Swersky et al. [2013] are of particular



interest. Both works use a GP to jointly model correlated contexts and propose a similar structure
for the joint GP’s kernel. We adopt a similar strategy, however, our model has the advantage that
lengthscales can vary between contexts.

A similar contextual optimization problem shows up in reinforcement learning (RL). While the
common RL setup has contexts delivered solely by the environment, there is some work on actively
choosing contexts [Fabisch and Metzen, 2014, Fabisch et al., 2015]. This work proposes methods for
approximating the expected improvement (EI) in the overall objective. Similarly, the objective can be
written in terms of entropy and experiments may be chosen in terms of its expected improvement
[Metzen, 2015, Swersky et al., 2013]. In our empirical study, we compare to expected improvement
for task and action selection.

Unlike many other problems under the BO setting, our algorithm searches for an optimal action
for each task rather than a single optimal action. This serves as a contrasting feature from other
problems in multi-task BO [Swersky et al., 2013, Toscano-Palmerin and Frazier, 2018], in which a
single action that performs optimally across all objectives simultaneously is sought. The works most
similar to ours present algorithms based around EI or knowledge gradients [Frazier et al., 2009]. In
particular Ginsbourger et al. [2014] and Pearce and Branke [2018] consider the same problem setting,
but focus on the case where the set of tasks is continuous. Although our algorithm can be adapted to
this case, we focus on the finite task setting and show that our posterior sampling approach provides
a theoretically-grounded, competitive alternative. We also note that previous works have used RBF
kernels for their synthetic experiments, and while this adequately models the reward landscape for
their relatively smooth functions, we claim that when there is a large variation in task difficulty this
may cause these algorithms to do more harm than good.

3 Thompson Sampling for Multi-Task Optimization

3.1 Preliminaries

For the following, let X’ be the collection of tasks and let A be the compact set of possible actions.
Throughout this work, we assume that the same set of actions is available for each task. Let
f: X x A — R be the bounded reward function, where f(x, a) is the reward for performing action
aintask z. Let h : X — A be our estimated mapping from task to action. Our goal is then to find
such an i which maximizes the following objective:
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where w(z) > 0 is some weighting on x that may depend on the probability of seeing x at evaluation
time or the importance of x. We usually assume that X’ is finite; however, we also consider the case
when X is continuous in Appendix D, in which case the sum in (1) becomes an integral. At round ¢
of optimization, we pick a task z; and an action a; to perform a query (z, a;) and observe a noisy
estimate of the function y; = f(x¢, a;) + €;, where ¢, ~ N (0, 062) and is iid. Let D, be the sequence
of queried tasks, actions, and rewards up to time ¢, i.e. Dy = {(z1,a1,91,),-.., (s, as,yt) }-
Additionally, define () to be the best reward observed for task x up to time ¢, a;(x) to be the
action made to see this corresponding reward, and A;(x) to be the set of all actions made for task x
up to time ¢.

In this work, we assume that f is drawn from a Gaussian process (GP) prior. A GP is characterized by
its mean function, £(-) and kernel (or covariance) function o (-, -). Then for any finite set of variables,
25y 2n € X XA [f(21)s -, f(20)]T ~ N (m, ), where m € R*, % € R™*", m; = u(z),
and ¥; ; = o(z;, z;). It is important to note that by selecting different kernel functions we make
implicit assumptions about the smoothness of f. A valuable property of the GP is that its posterior is
simple to compute. We denote y; and o, to be the posterior mean and posterior kernel functions after
seeing ¢ evaluations. For more information about GPs see Rasmussen and Williams [2005].

3.2 Multi-Task Thompson Sampling

We now describe our proposed algorithm called Multi-Task Thompson Sampling (MTS), which is
presented in Algorithm 1 for the case in which X is a finite set of correlated tasks. The algorithm is



an extension of Thompson sampling [Thompson, 1933] to the multi-task setting. Simply put, MTS
acts optimally with respect to samples drawn from the posterior. That is, at every round a sample for
the reward function is drawn, and this sample is used as if it was ground truth to identify the task in
which the most improvement can be made. After doing this for 7" iterations, we return the estimated
mapping A such that i(z) = ar () if an evaluation was made for task z; otherwise, 2(2) maps to an
a € A drawn uniformly at random. Note that when tasks are assumed to be independent, Algorithm 1
can be modified by instead using a separate GP prior for each task and drawing samples from each at
every iteration.

Algorithm 1 Multi-Task Thompson Sampling (MTS)
Input: capital 7', initial capital ¢;,,;;, mean function i, kernel function o.
Do random search on tasks in round-robin fashion until ¢;,,;; evaluations are expended.
fort =ty +1to T do
Draw f ~ GP(p,0)|Ds—1.

Set x; = argmax KmaxaeA flz,a) — maX,e A, (z) flx, a)) w(x)}
zeX

Set a; = argmax f(x¢, a).
acA
Observe y; = f(x¢, az).
Update Dy = Dy_1 U {(x¢, ar, )}
end for
Output: h

One benefit of this algorithm is that it comes with theoretic guarantees. For the following, define
a}(z) to be the past action played for task z that yields the largest expected reward. That is,

argmax f(z,0)  Ai(r) £ 0
* . ) acAi(2)
ai (@) : argminf(z,a) else
acA

Note that a} () has an implicit dependence on f.

Theorem 1. Define the maximum information gain to be vy := maxp,. I(Dr; f), where I(-;-) is
the Shannon mutual information. Assume that X and A are finite. Then if Algorithm 1 is played for

T rounds where t;,;; =0
1 ‘X”AWT
< i L b
B[R] < || (T /e

where the expectation is with respect to the data sequence collected and f, and where Ry is defined
to be

> pex w(@) (Maxeen f(z,a) — f(z, a7 (2)))
ZweX w(a:) (maXaEA f(x7 a) - minueA f(xv 0,))

when the denominator is not 0. Otherwise, Ry y takes the value of 0.

Ry =

The proof of this theorem (see Appendix A) uses ideas from Kandasamy et al. [2019a]. This result
gives a bound on the expected normalized total simple regret. Here, simple regret is the difference
between the best reward and the best reward for a played action (i.e. max,ec 4 f(x,a) — f(z, ak(x))),
and fotal simple regret refers to the simple regret summed across all tasks. The /| X||.A]| factor in
the theorem accounts for the number of actions that can be taken at every step, and the /7t factor
characterizes the complexity of the prior over the tasks. We suspect that our proof technique may
have lead to a somewhat loose bound because there is an extra dependence of |X'|; that being said,
we still get that the rate of decrease is dominated by \/? , which is the same as the single-task regret
rate [Russo and Van Roy, 2014].

An important implication of this result is that there is no task in which we will have especially bad
results, and when 47 = o(T), the normalized simple regret converges to 0 in expectation for every
task. We note that Srinivas et al. [2009] give bounds on the maximum information gain for a single



GP in a few standard cases. For example, when dealing with a GP over a d-dimensional compact

set using an RBF kernel, V(TRBF) = O(log(t)?*1). Finally, we note that these types of results can
usually be generalized to infinite action spaces via known techniques [Russo and Van Roy, 2016,
Bubeck et al., 2011]

Continuous task setting. Often one is confronted by a set of tasks that are correlated and continuous.
The problem of finding a policy in this setting is inherently different because the tasks seen offline
will not be the exact same as the tasks encountered when the policy is deployed. Nevertheless,
MTS can be adapted to this setting by leveraging the posterior mean instead of 4, (x) (details are
in Appendix D). Even though greedily picking evaluations to increase improvement within a single
task is likely not optimal here, we found that our algorithm performs competitively with other more
expensive state of the art methods, especially in higher dimensional settings.

3.3 Synthetic Experiments
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Figure 1: Synthetic experiments for MTS. Each of the experiments were averaged over 10 trials
and show the mean value and standard error. The plots for independent tasks in the top row are as
follows: (a) Total simple regret when tasks are Branin-Hoo and four other identical 2D parabaloids,
(b) the corresponding proportion of capital spent for each task in (a), (¢) total simple regret for 30
random 4D functions, (d) total simple regret for 30 random 6D functions. The second row shows
total simple regret for Branin 1-1 (e), Hartmann 2-2 (f), Hartmann 3-1 (g), and Hartmann 4-2 (h). In
many of the cases, we must estimate the true optimal value and therefore cannot plot the true regret
(see Appendix F).

Independent Tasks. For this setting we compare MTS against a suite of baselines which distribute
resources evenly amongst tasks. The first of which, selects task-action pairs uniformly at random.
Additionally, we compare against the procedure of selecting a task uniformly at random and applying
standard Thompson sampling (TS) or expected improvement (EI) at every iteration. This is essentially
equivalent to iteratively optimizing for each task using standard BO methods, using the same amount
of computation for each task. Additionally, we compare against the procedure described by Swersky
et al. [2013] in Section 3.2. This algorithm, which we call Multi-task Expected Improvement (MEI),
picks the task with the greatest expected improvement at every iteration. However, we do not impute
missing data across tasks using the posterior mean (in the independent case it is impossible to do
s0). Although the setting this algorithm was designed for is slightly different (it is assumed there
is one optimal action over all tasks), the approach is still applicable to our setting. The following
experiments are averaged over 10 trials. We start by evaluating each task with 5 points drawn
uniformly at random. Each task is modeled by a GP with an RBF kernel, and hyperparameters are
tuned for a GP every time an observation is seen for its corresponding task. For two-dimensional



functions, hyperparameters are tuned according to marginal likelihood, but for greater dimensions,
tuning is done using a blend of marginal likelihood and posterior sampling. This method was found
to be more robust by Kandasamy et al. [2019b]. Here, and throughout this section, we leverage the
Dragonfly library for our experiments [Kandasamy et al., 2019b]. Lastly, in every experiment we let
w(z) = 1forall z € X and give noiseless feedback to the algorithms.

For the first synthetic problem, we wish to optimize over 5 functions: four of which are concave
parabaloids (with a range of [0, 1]) and the other being the Branin-Hoo function [Branin, 1972]. Not
only does the Branin-Hoo function have a greater scale, but it is also much more complex. Thus, one
might imagine that virtually all resources should be invested in optimizing this function, which is
the behavior displayed by MEIL. However, we see that MTS performs best by distributing resources
more liberally amongst tasks (see Figure 1 (a) and (b)). We also test these methods on 30 randomly
generated functions in four and six dimensions (see Appendix B for details), and we found MTS to
be the strongest performer.

Correlated Finite Tasks. To evaluate our method in the correlated finite task setting, we take multi-
dimensional functions, treat the first few dimensions as task space, and select equispaced tasks in
this space to focus on. In particular we use the Branin-Hoo, Hartmann 4, and Hartmann 6 [Picheny
et al., 2013] function to create Branin 1-1, Hartmann 2-2, Hartmann 3-1, and Hartmann 4-2, where
the first number is the task dimension and the second is the action dimension. We consider 10, 9,
8, and 16 tasks for each of these functions, respectively. The set up is identical to before except for
that a single GP is used to jointly model tasks, and the GP is tuned by maximizing the marginal
likelihood for all experiments. In addition to the previous baselines, we also compare against the
REVI algorithm introduced by [Pearce and Branke, 2018]. This algorithm, based on knowledge
gradients Frazier et al. [2009], picks task-action pairs for evaluation by estimating which will increase
the GP mean the greatest across all tasks. That is, it myopically tries to optimize (1) at each round by
using the GP mean as a proxy. In the risk-averse setting in which the policy returned maps task to the
best action seen throughout training (i.e. the setting we have considered throughout this paper), the
authors recommend running EI in a round-robbin fashion at the end of training. As such, we end the
optimization with one round of EI for REVI.

The results are shown in the second row of Figure 1. We also compare in the risk-neutral setting
(i.e. when the policy is derived from posterior mean) in Appendix C. For the majority of the cases
MTS and MEI are the best performers. The exception to this is the experiment done on the Hartmann
4-2 function. Here, MEI does significantly worse than standard EI and TS methods, while MTS has
about the same performance. We found that MEI focuses almost all of its capital on just three tasks,
which most likely causes the poor performance. In all cases, MTS and MEI outperform REVI, even
when a round of EI is performed at the end of execution. We believe that REVI does not perform as
well in these experiments since the tasks considered are spread out in task space, and REVI focuses
less on tasks at the boundary of the space (see Appendix E for visualizations). Indeed, if we consider
continuous correlated tasks instead (see Appendix D), REVI becomes a strong performer. With that
being said, we argue that the formulation of these experiments is natural for real life applications, and
the set up for our fusion experiments in Section 5 is similar to this.

4 Modeling Variation in Difficulty

The selection of hyperparameters for the kernel function of a GP is often key to whether the landscape
can be modeled well. Usually these hyperparameters include lengthscale, which determines how
correlated points are based on their distance to each other, and scale, which determines the magnitude
of correlation. Intuitively, these values provide some indication of the optimization landscape’s
difficulty. For example, larger lengthscales imply more smooth functions, which are often easier to
optimize for. From a more theoretical standpoint, the hyperparameters have a direct effect on the
maximum information gain and therefore impact regret bounds shown by Theorem 1 and Russo and
Van Roy [2014].

Intuitively, hyperparameters should vary between tasks in order to adequately model any difference in
difficulty between them. One method for achieving this when jointly modelling tasks is via a locally
stationary kernel, i.e. hyperparameters vary with respect to tasks but not with actions. Although there
may be many ways to achieve this, a straightforward approach is to use the Gibbs kernel [Gibbs,
1998]. The Gibbs kernel is a non-stationary variant of the RBF kernel that allows the lengthscale and



scale to vary over the space. Where z, 2’ € X’ x A, Px = dim(X) and P4 = dim(A),

/ Px+Pa QKP(Z)KP(Z/) —(Zp - 2’1/))2
o=l l B+ T \BR T EE) .

p=1

Here, ¢, is the non-negative lengthscale function that characterizes the hyperparameters for the pth
dimension. The above can be separated into the product of a kernel over the task space and a kernel
over the action space, i.e. 0(z,2') = ox(z,2')oa(z, 2') where z = (x,a) and 2’ = (2, a’). To suit
our needs, we make all lengthscale functions for ox constant functions so that ¢;(z) = ¢; where
l; € Rand ¢; > O foralli = 1,..., Px. As for 04, we limit the lengthscale functions to only
depend on the task component of z. Altogether,
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Note that with this modification o x reduces to the RBF kernel. Furthermore, for any fixed task
x € X (i.e. we only consider z = (z, a), 2’ = (z,a’)) the entire kernel reduces to the RBF kernel.
As such, we are left with a locally stationary kernel, where the hyperparameters only vary as the task
varies. In the proceeding section, we leverage this model with our posterior sampling methods.

Synthetic Example. For the correlated task experiment in Section 3.3, tasks are generally quite
similar, so MTS and MEI can do well when the GP uses an RBF kernel. However, we now wish
to optimize 10 correlated tasks of variable difficulty. To create the tasks, we take slices from the
function visualized in Figure 2 (see Section B in Appendix for details). Like many real-world tasks,
this function has areas that make for an interesting optimization problem and others that are quite
boring. In order to optimize well, we use the kernel presented in (3), where the lengthscale function
of each action dimension is the soft plus of a quadratic polynomial, and the coefficients of each
polynomial are treated as hyperparameters. We form a hierarchical probabilistic model by placing
Normal priors over each hyperparameter. Then, for every iteration of our algorithm, we now make
decisions according to a posterior sample drawn from this hierarchical model. For our implementation
of these models, we use probabilistic programming and BO frameworks [Carpenter et al., 2017,
Neiswanger et al., 2019].

In practice, this does a superior job at modeling each task. To show this, each of the ten tasks were
evaluated at five points. Then, both our suggested model and a stationary model using an RBF kernel
was fit to the data. The difference becomes especially clear when looking at tasks that are relatively
flat functions, since the stationary GP falsely estimates large peaks. This can be especially damaging
in our case where we select tasks based on possible performance improvements.

Total Simple Regret

(a) (b) © (d)

Figure 2: Tasks of varying difficulty. (a): Average best seen rewards summed across all tasks of
varying difficulty. Each curve is averaged over 12 trials, and the shaded region shows the standard
error. (b): Surface of the function used to generate correlated tasks. (¢) shows our proposed model
on an easy task, and (d) shows a stationary model on the same easy task. Here, the red line shows the
true function, the black line shows the posterior mean, the blue points show evaluations made for the
corresponding task, and the shaded area shows high confidence regions.

We run optimization using MTS and standard Thompson sampling where tasks are picked uniformly
at random. Moreover, we run these algorithms using the model described above, using a single GP



that jointly models tasks using an RBF kernel, and using several GPs, each corresponding to a task
and using an RBF kernel (i.e. assume that tasks have no correlation). In all cases, we use posterior
sampling to select hyperparameters. For simplicity, we append prefixes to these methods where “T”
stands for independent GPs, “S” stands for stationary GP, and “NS” stands for non-stationary GP.
The results in Figure 2 show that one can be negatively affected by picking tasks given an ill-suited
model. Although S-MTS ultimately ends up performing well, it initially struggles when compared to
S-TS and I-MTS. Thus depending on resources available, it may be better to either forego shared
information to better model the function or distribute resources to tasks uniformly. That being said,
disregarding both shared information and picking tasks intelligently, as in I-TS, results in the worst
performance (not pictured here). Notice that when tasks can be modeled appropriately, distributing
resources according to our algorithm is again beneficial as shown by NS-MTS.

S Application to Nuclear Fusion

Nuclear fusion is regarded as the energy of the future since it presents the possibility of unlimited
clean energy. The most widespread method of realizing fusion reactions requires heating up isotopes
of hydrogen to temperatures of hundreds of millions of degrees using a magnetic device called a
tokamak. In this state, the nuclei of two nearby atoms may overcome electrostatic repulsion force
between them to form a single nucleus, releasing energy. One obstacle in utilizing fusion as a feasible
energy source, however, is the stability of the reaction. Once the plasma has reached a reaction state,
it is uncertain how the tokamak controls should be modified to address the varying state of the plasma
in order to sustain the fusion reaction. We tackle this problem by attempting to learn optimal controls
offline via a simulator. In particular, we apply our algorithm to determine a mapping from plasma
state to tokamak neutral beam controls.

Experiment Set Up. We consider a collection of 7 tasks that represent different plasma states. An
evaluation of an action on a task corresponds to setting the tokamak beam controls and conducting a
simulation on the selected state of the plasma. These simulations are run on the predictive mode of
TRANSP, which simulates tokamaks. Both the action space and the task space are two dimensional,
and the reward is a weighted sum of plasma stability and fusion reaction efficiency. Appendix G.1
provides more details of this experiment.

We compare the performance of 4 algorithms: MTS and standard Thompson sampling with a
joint GP model across both states (tasks) and actions (denoted J-MTS and J-TS, respectively),
and MTS and standard Thompson sampling with independent GP models across actions for each
state (denoted I-MTS and I-TS). Because we had no reason to believe that there will be a drastic
difference in difficulty between tasks, we used a non-stationary kernel for these initial experiments.
Moreover, the experimental settings were identical to the two-dimensional synthetic experiments in
Section 3.3, except for 2 differences: 5 trials of each algorithms were run with each trial consisting
of 200 evaluations, and in each trial, we allow up to 10 evaluations to be run in parallel. We
rely on parallel optimization here since each query has high simulation overhead (> 1 hour per
simulation experiment). For more details regarding the setup for the fusion simulation experiments,
see Appendix G.1.

Over 200 evaluations, we observe that J-MTS (the blue curve in Figure 3 (a)) outperforms J-TS,
which shows the merit of focusing on states that are deemed more “difficult”, rather than uniformly
selecting a state. This behavior can also be seen in the performance and query plots per task in
Figure 3 (b). Once the reward has levelled off in a certain task (e.g. plasma state 3, 4), J-MTS stops
querying the task and queries other tasks that are predicted to provide improvement, while J-TS will
still query the task as it chooses tasks randomly. This algorithm also outperforms the MTS and TS
with independent models for each state, I-MTS and I-TS, which shows the merit of jointly learning
the state-action space and sharing information across the correlated states. With independent GPs for
each state, I-TS outperformed I-MTS. We believe this may be because of occasional erratic outputs
from the simulator. This occurred more frequently in some states than in others and when the limits
of the simulator were tested with extreme controls (e.g. very high power for all neutral beams). In
such cases, I-MTS will estimate the reward landscape to be non-smooth and focus on the particular
state. This behavior is shown by the high proportion of queries made by I-MTS in state 3 (Figure 3
(c)) despite little further improvement in reward (Figure 3 (b)). It is worthwhile to note, however,
that this behavior is not evident in J-MTS, and we believe that using all queries of state-action pairs
to learn a single joint state-action model is more robust to extreme observations from a particular



Plasma State 0 Plasma State 3
10° 0.35
0.30

L‘T |
107t 0.25

0 50 0 50 100

t t

Plasma State 4 Plasma State 6

10°
0.10
\

107t ]

Regret per Task
P
<

Total Regret
Proportion
o
S

°
=
el

|
Regret per Task

-2
25 50 75 100 125 150 175 ) 5o q0- 2% 20 20 000 State 0 State 1 State 2 State 3 State 4 State 5 State 6
t t

(a) (b) (©

Figure 3: Fusion Simulation Experiments. Each of the above show average values and standard
error from 5 trials. (a) shows the total regret summed across all tasks, (b) the regret achieved in each
task, and (c) the proportion of capital spend in each task. Note that curves differ in length for (b)
since different amounts of resources were allocated for each task.

state. An experiment setting where the controls are highly constrained, and hence less straining to the
simulator, is presented in Appendix G.2 and in Chung et al. [2020].

Discussion of Physical Results. These results are promising, not only from an algorithmic perspec-
tive, but also from a physics perspective. While there have been applications of machine learning
techniques in nuclear fusion, they primarily focus on detecting disruptions and plasma instabilities
[Cannas et al., 2013, Tang et al., 2016, Montes et al., 2019, Kates-Harbeck et al., 2019]. The work
done by Baltz et al. [2017] is the closest to our application; however, since they were doing costly
experiments online, their optimization leveraged human operators to ultimately decide which evalu-
ation to perform next. To the best of our knowledge, our application is one of the first attempts in
conducting offline optimization for tokamak control.

With these initial results established, we hope to continue progress on this problem by forming a
closed loop controller for a tokamak. This requires expanding the number of tasks so that they
cover the plasma’s state space, and adapting to the fact that the state space is continuous (i.e. either
via interpolation or using the continuous variant of MTS). Furthermore, we wish to develop more
sophisticated plasma state representations, actions that can be applied, and reward functions in order
to discover more interesting results. Lastly, readers may note that a controller derived from this
method may not be optimal. Here, we have been seeking actions that myopically maximize reward;
however, the real goal is to find an optimal sequence of actions that maximizes long term reward. We
started with this approach since simulations are expensive, and we hope that this approximation still
leads to a good controller. That being said, in the future we would like to extend the ideas of our
algorithm to the reinforcement learning setting in order to derive sample efficient methods.

6 Conclusion

In this paper, we have proposed methods for dealing with many optimization problems that need to
be solved simultaneously. We introduced a posterior sampling approach that has theoretic guarantees
and often has dominant performance when compared to methods which do not distributed resources
intelligently. This Thompson sampling method pairs nicely with our proposed locally stationary
model, and we demonstrated that more sophisticated models are key when functions vary in difficulty.
Finally, we used our algorithm to derive real results for nuclear fusion, which we hope to build upon
in following work.
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